Brief Communications

Reaction of 3H-perfluoroalk-2-enes with ammonia

O. E. Petrova and M. A. Kurykin*

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117813 Moscow, Russian Federation.

Fax: +7 (095) 135 5085. E-mail: mak@ineos.ac.ru

3*H*-Perfluoroalk-2-enes react with aqueous ammonia to form polyfluorinated iminoenamines, from which hexafluoroacetylacetone and its analogs were synthesized.

Key words: monohydroperfluoroolefins, 3*H*-perfluoroalk-2-enes, ammonolysis; polyfluorinated iminoenamines, synthesis; polyfluorinated β-diketones, hexafluoroacetylacetone.

We have previously shown that perfluoroalk-2-enes (perfluoropentene, perfluorohexene, perfluoroheptene, and perfluoroctene) react with aqueous NH₃ to form iminoenamines, whose hydrolysis gives heptafluoroacetylacetone and its homologs. It seemed reasonable to extend this reaction to 3*H*-perfluoroalk-2-enes, which would provide earlier inaccessible bis-aza analogs of hexafluoroacetylacetone and its homologs.

We found that monohydroperfluoroalk-2-enes, such as 3H-perfluoropent-2-ene, 3H-perfluorohex-2-ene, and 3H-perfluorohept-2-ene (1a—c), also react readily with aqueous NH_3 in acetone under atmospheric pressure to form iminoenamines 2 (Scheme 1, Tables 1 and 2).

Compounds **2a**—**c** are mobile light-yellow liquids with chelate structure, as follows from their ¹H and ¹⁹F spectra. The spectra of diimines **2a**—**c** contain one signal common for all three NH protons. Both trifluoromethyl groups in **2a** are magnetically equivalent.

We studied some chemical properties of the synthesized iminoenamines. Under hydrolysis (heating with conc. HCl), compounds 2a-c are transformed into dihydrates of the corresponding diketones 3a-c. Note

Scheme 1

$$F_{3}C \xrightarrow{H} R_{F} \xrightarrow{NH_{4}OH} A_{e_{2}CO} \xrightarrow{a_{F_{3}}C} \xrightarrow{H} R_{F} \xrightarrow{H_{2}O/H^{+}} A_{e_{2}O/H^{+}}$$

$$1a-c \qquad 2a-c$$

$$OH \qquad OH \qquad CH_{2}SO_{4} \qquad (P_{2}O_{5})$$

$$3a-c \qquad A_{2}C \qquad A_{3}C \qquad A_{4}C$$

$$R_{F} = CF_{3} (a), C_{2}F_{5} (b), C_{3}F_{7} (c)$$

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 149-150, January, 2001.

1066-5285/00/5001-0155 \$25.00 © 2001 Plenum Publishing Corporation

Table 1. Yields and elemental analysis data of compounds 2a-c

Com- pound	Yield (%)	B.p. /°C	Found (%) Calculated			Molecular formula
			С	Н	F	
2a	86.8	96—99	<u>29.0</u> 29.1	1.8 1.9	55.6 55.3	$C_5H_4F_6N_2$
2 b	72.4	110—113	28.4 28.1	1.6	59.4 59.4	$C_6H_4F_8N_2$
2c	76.2	122—123	$\frac{27.3}{27.5}$	$\frac{1.3}{1.3}$	61.9 62.1	$C_7H_4F_{10}N_2$

Table 2. Spectral parameters of compounds 2a—c

Com-	IR, v/cm ⁻¹	¹ H NMR, δ (<i>J</i> /Hz)			
pound, R _F	-	¹⁹ F	¹ H		
2a , CF ₃	1562, 1600, 1665, 3332, 3519	-2.5 (s, 6 F)	5.7 (s, 1 H); 8.7 (br.s, 3 H)		
2b , CF ₂ ^b CF ₃ ^c	1560, 1604,	-3.6 (s, $3F_a$); 6.6 (t, $3F_c$, J = 2) 45.9 (q, $2F_b$, J = 2)	5.3 (s, 1 H);		
2c , CF ₂ ^b CF ₂ ^c CF ^d ₂		-1.5 (s, 3 F _a); 5.0 (t, 3 F _d ,			

that dihydrate **3c** is stable below ~15 °C and melts with decomposition to diketone and water at higher temperatures. By contrast, dihydrates **3a,b** are colorless crystalline substances stable at a room temperature. This distinction in stability of **3a,b** and **3c** has previously been observed.³

β-Diketones **4a**,**b** can easily be prepared from the corresponding dihydrates **3a**,**b** by dehydration of the latter on heating with P_2O_5 or conc. H_2SO_4 .

Thus, we have proposed a method for synthesis of polyfluorinated iminoenamines and developed an alternative method for synthesis of hexafluoroacetylacetone and its homologs from internal polyfluoroalkenes (the known method for synthesis of polyfluorinated β -diketones is based on the Claisen condensation^{3,4}).

Experimental

 $^{1}\mathrm{H}$ and $^{19}\mathrm{F}$ NMR spectra were recorded on a Bruker AC-200F spectrometer (200 and 188.3 MHz) relative to exter-

nal standards Me_4Si and CF_3COOH , respectively. IR spectra were recorded on an UR-20 spectrometer (in thin layer) in a range of $400-4000~cm^{-1}$.

3H-Perfluoroalk-2-enes were synthesized according to the published procedure.²

2-Amino-3-hydro-4-iminoperfluoropent-2-ene (2a), 2-amino-3-hydro-4-iminoperfluorohex-2-ene (2b), and 2-amino-3-hydro-4-iminoperfluorohept-2-ene (2c). An aqueous 25% ammonia solution (39 g, 0.57 mol) was added dropwise for 1 h with stirring to compound **1a** (23.5 g, 0.10 mol) in acetone (200 mL) at 2–5 °C. The reaction mixture was poured into water. The organic layer was separated, washed with water (2×100 mL), dried over CaCl₂, and distilled. Compound **2a** (19.3 g) was obtained. Compounds **2b** and **2c** were prepared similarly. For characteristics of aminoimines **2a–c**, see Tables 1 and 2.

3,3-Dihydroperfluoropentane-2,2,4,4-tetrole (3a) and 3,3-dihydroperfluorohexane-2,2,4,4-tetrole (3b). A mixture of compound **2a** (10.3 g, 0.051 mmol) and conc. HCl (30 mL) was refluxed for ~3 h. The reaction mixture was extracted with diethyl ether (4×20 mL), the extract was dried over MgSO₄, the solvent was evaporated, and the residue was recrystallized from CCl₄. Compound **3a** was obtained in 78.7% yield (9.6 g), m.p. 110—111 °C (*cf.* Ref. 5: ~90 °C (decomp.)). Compound **3b** was obtained similarly in 69.4% yield, m.p. 57—59 °C (*cf.* Ref. 3: 60—61 °C).

3,3-Dihydroperfluoroheptane-2,4-dione (4c). A mixture of compound **2c** (15.3 g) and conc. HCl (35 mL) was refluxed for \sim 2 h. After the reaction mixture was cooled to room temperature, the organic layer was separated, and the aqueous layer was extracted with ether (2×20 mL). The organic layer was combined with the extract, the major portion of the solvent was distilled off, and conc. H₂SO₄ (20 mL) was added to the residue. Compound **4c** was obtained by distillation in 69.5% yield (10.7 g), b.p. 103–105 °C (*cf.* Ref. 3: 103–104 °C).

Hexafluoroacetylacetone (4a) was prepared from compound **3a** by the previously described method³ in 98.3% yield, b.p. 69–70 °C (*cf.* Ref. 4: 63–65 °C).

3,3-Dihydroperfluorohexane-2,4-dione (4b) was prepared from compound **3b** by the previously described procedure³ in 89.4% yield, b.p. 85–87 °C (*cf.* Ref. 3: 85–86 °C).

References

- O. E. Petrova, M. A. Kurykin, and D. V. Gorlov, *Izv. Akad. Nauk, Ser. Khim.*, 1999, 1710 [*Russ. Chem. Bull.*, 1999, 48, 1710 (Engl. Transl.)].
- V. A. Petrov, G. G. Belen'kii, and L. S. German, *Izv. Akad. Nauk SSSR*, *Ser. Khim.*, 1982, 1591 [*Bull. Acad. Sci. USSR*, *Div. Chem. Sci.*, 1982, 31 (Engl. Transl.)].
- 3. W. G. Schribner, B. H. Smith, R. W. Moshier, and R. E. Sievers, *J. Org. Chem.*, 1970, **35**, 1696.
- A. L. Henne, M. S. Newman, L. L. Quill, and R. A. Staniforth, J. Am. Chem. Soc., 1947, 69, 1819.
- H. Gilman, R. G. Jones, E. Bindschdler, D. Blume, G. Karmas, G. A. Martin, J. F. Nobis, J. R. Thirtle, H. L. Yale, and F. A. Yoeman, J. Am. Chem. Soc., 1956, 78, 2790.

Received January 26, 2000; in revised form May 17 20000